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Abstract

A group Γ is called boundedly generated (BG) if it is the set-
theoretic product of finitely many cyclic subgroups. We show that a
BG group has only abelian by finite images in positive characteristic
representations.

We use this to reprove and generalise Rapinchuk’s theorem by
showing that a BG group with the FAb property has only finitely many
irreducible representations in any given dimension over any field. We
also give a structure theorem for the profinite completion G of such a
group Γ.

On the other hand, we exhibit boundedly generated profinite FAb
groups which do not satisfy this structure theorem.

1 Introduction

A group (resp. profinite group) Γ is said to have bounded generation (or
finite cyclic width) if Γ is a product of its cyclic (resp. procyclic) subgroups
C1, . . . , Ck. The smallest number k for which Γ has such a decomposition is
called the cyclic width of Γ (which we denote by cw(Γ)).

Following the discovery [CK] that the groups SL(n, Z) (n ≥ 3) have
bounded generation, it has been shown that many other S-arithmetic groups
over number fields have this property [Ta], and the notion received a consid-
erable amount of attention [PR], [Lu], [Ra2], [LP] and [Mu].

Recall that Γ is said to have property FAb if for any subgroup Γ0 ⊆ Γ of
finite index the commutator quotient Γo/[Γo, Γo] is finite.

A major open problem in the area proposed by Bass [Ba2] is whether a
residually finite FAb BG group Γ is linear. This is indeed the case if Γ is
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residually nilpotent [MS] (in this case we don’t even have to assume property
FAb).

In the current paper we make a step forward in understanding the struc-
ture of FAb BG groups and their linear representations.

We first show that unlike in characteristic 0, there are very few boundedly
generated groups in characteristic p.

Theorem 1. Let F be a field of positive characteristic. If Γ is a boundedly
generated subgroup of GL(n, F), then Γ has an Abelian normal subgroup of
finite index.

¿From this we can also deduce the following result, which was proved by
Rapinchuk [Ra1] in characteristic 0.

Corollary 2. Let Γ be an FAb BG group and let F be an arbitrary field.
Then Γ has finitely many inequivalent completely reducible representations
over F in any given dimension.

Using the corollary, we show the following.

Theorem 3. Let Γ be an FAb BG group and p a prime. Then Γ has finitely
many upper composition factors L in Lie(p).

Theorem 3 together with some results from [BMP] gives the following
structure theorem for the profinite completions of FAb BG groups.

Theorem 4. Let G = Γ̂ be the profinite completion of an FAb BG group Γ.
Then there exist a series

1 ⊆ S ⊆ H ⊆ G

of normal subgroups of G and a natural number r (which depends only on
cw(Γ)) such that
1) G/H is finite;
2) S is prosolvable;
3) H/S is a cartesian product of finite simple groups of Lie type such that
the multiplicities and the Lie ranks of these simple groups are at most r;
4) For every prime p only finitely many of these simple groups are in Lie(p).

2



Corollary 5. If Γ is in addition just infinite (i.e., every non-trivial normal
subgroup has finite index), then exactly one of the following holds:
0) Γ is finite;
1) Γ is not linear and it has a finite index subgroup Γ0 such that every finite
quotient of Γ0 is solvable;
2) Γ is a linear group embeddable as a Zariski-dense subgroup in an S-
arithmetic subgroup of a semisimple algebraic group G defined over a number
field K.

So to give a positive answer to the question of Bass for just infinite groups
one should eliminate case 1) above.

It is an interesting problem to decide whether a group Γ as in Corollary
5, case 2) is in fact S-arithmetic. This question may be considered as a
replacement of Platonov’s conjecture, to which a counterexample has been
given recently [BL].

Finally we show that Corollary 2, Theorem 3 and Theorem 4, part 4)
do not hold for general FAb BG profinite groups. In Section 3 we consider
examples like

∏
p PSL(2, 2p) where p runs over all primes and prove that

these groups are BG and FAb. At the same time we note that
∏

n PSL(2, 2n)
where n runs over all positive integers, is not BG.

Recall that in [Py] it was shown that BG groups have subgroup growth
at most nc log n. We also construct BG profinite groups of this growth type
showing that the result in [Py] is best possible. We do not know whether
such a discrete group exists.

2 Boundedly generated groups

We start with a slight extension of a result of Shalev [Sh2, Proposition 5.6].

Proposition 6. Let G be a p-adic analytic pro-p group. Assume G can be
embedded in GL(n, K) for some local field K of positive characteristic `. Then
1) If ` 6= p then G is finite.
2) If ` = p then G is virtually abelian.

If ` 6= p, then the p-Sylow subgroups of any profinite subgroup of GL(n, K)
are finite, so G must be finite.

The case ` = p is deduced from the following result of Pink [Pi, Corollary
0.5].
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Theorem 7. Let K be a local field of characteristic p > 0 and L a compact
subgroup of GL(n, K). Then there exist normal subgroups L3 < L2 < L1 < L
such that:
1) L/L1 is finite.
2) L1/L2 is abelian of finite exponent.
3) There exists a local field E of characteristic p, a connected adjoint semi-
simple group H over E with universal covering π : H̃ → H and an open
compact subgroup ∆ ⊆ H̃(E), such that L2/L3 is isomorphic to π(∆) as a
topological group.
4) L3 is a solvable subgroup of derived length at most log2 n.

We apply Pink’s theorem for L = G in proving case 2 of Proposition 6.
As G is a p-adic analytic pro-p group, it is finitely generated and so is L1.
Moreover L1/L2 is abelian of finite exponent and finitely generated, hence
finite and so L2 is also of finite index. Now, L2/L3 is a p-adic analytic pro-p
group which is isomorphic to an open compact subgroup ∆ of a semi-simple
group H over a characteristic p local field E. This is impossible. Indeed, E
is isomorphic to Fq((t)) for some q = pα, α ∈ N, and ∆ is commensurable to
H(Fq[[t]]). We claim that the latter has infinite rank. For n ∈ N, let

K(n) = Ker(H(Fq[[t]]) → H(Fq[[t]]/(t
n))).

It is easy to see that [K(n), K(n)] ⊂ K(2n) and K(n)p ⊂ K(pn). Thus
K(n)/K(2n) is an elementary abelian p-group. When n is going to infinity,
the rank of K(n)/K(2n) is going to infinity as well. Thus H(Fq[[t]]), and
∆, cannot be of finite rank and cannot be isomorphic to a p-adic analytic
pro-p group [DDMS]. (One could also deduce the same conclusion from [Pi,
Corollary 0.3] which shows that if two open compact subgroups of simple
algebraic groups over local fields are isomorphic, then the fields are the same,
and the algebraic groups are isomorphic).

We can therefore deduce that H is trivial and L3 is of finite index in
L = G. We have concluded that G is virtually solvable. We claim now
that G is actually virtually abelian. Indeed, if G is a solvable subgroup of
GL(n, K), then over K, the algebraic closure of K, a finite index subgroup
of G is conjugate to the group of upper triangular matrices. So we can
assume that G is upper triangular, hence unipotent by abelian. But the
upper unipotent subgroup of GL(n, K) is torsion. As G is a p-adic analytic
pro-p group it is virtually torsion-free [DDMS, 4.20]. The finite index torsion-
free subgroup of G has trivial intersection with the unipotent subgroup hence
it must be abelian. This finishes the proof of Proposition 6.
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We deduce the following.

Proposition 8. Let F be a field of positive characteristic p. Suppose that Γ
is a finitely generated subgroup of GL(n, F) such that the pro-p completion
of every finite index subgroup of Γ is p-adic analytic. Then Γ is virtually
abelian.

Proof. As Γ is finitely generated it is actually in GL(n, A) where A is a
finitely generated subring of F. Now A can be embedded into a local field.
Moreover, it can be embedded into the ring of integers of some local field.
So we can assume that Γ is a subgroup of M = GL(n, Fq[[x]]) where q is a
power of p and Fq is the field of order q. M is virtually pro-p so Γ has a
finite index subgroup Γ0 such that the closure G of Γ0 in M is a pro-p group.
By our hypothesis G must be p-adic analytic (being a quotient of a p-adic
analytic pro-p group). We can now apply Proposition 6 to deduce that G,
hence Γ is virtually abelian. �

This general criterion can be used in conjunction with the known charac-
terisations of p-adic analytic pro-p groups to derive various results.

Proof of Theorem 1.
Let Γ be a boundedly generated subgroup of GL(n, F). Then every finite

index subgroup Γ0 of Γ is boundedly generated [Ta], hence the same is true
for the pro-p completion G0 of Γ0. By a result of Lazard (see [DDMS]) every
such group G0 is p-adic analytic.

Applying Proposition 8 we see that Γ is virtually abelian. �

Recall that a group Γ is said to have polynomial index growth (PIG),
if there is a constant c such that for every finite quotient Γ/N we have
|Γ/N | ≤ (exp(Γ/N))c (where exp(G) denotes the exponent of the group G).
It is clear that boundedly generated groups have PIG. Using the results of
Lazard (see [DDMS] and [Sh1]) together with Proposition 8 it follows that
in fact the conclusion of Theorem 1 holds under the weaker assumption that
Γ has PIG.

We point out another consequence of Proposition 8.
Let Γ be a finitely generated residually-finite group and let sn(Γ) denote

the number of subgroups of Γ of index at most n. The asymptotic growth of
sn(Γ) has been a topic of intensive research in the last decade – see [LS] and
the references therein.

In [Lu] it was shown that a subgroup growth gap exists for groups Γ which
are linear over fields of characteristic 0.
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Theorem 9. Let F be a field of characteristic 0 and Γ a finitely generated
subgroup of GL(n, F). Then one of the following holds:
1) Γ is a virtually solvable group of finite rank (and therefore it has polynomial
subgroup growth);
2) There exists a constant c such that sn(Γ) ≥ nc log n/ log log n for every n.

Here we prove that a larger subgroup growth gap exists for linear groups
over fields of positive characteristic.

Theorem 10. Let F be a field of characteristic p > 0 and Γ a finitely gen-
erated subgroup of GL(n, F). The one of the following holds:
1) Γ is a virtually abelian group of finite rank (and therefore it has polynomial
subgroup growth);
2) There exists a constant c such that sn(Γ) ≥ nc log n for infinitely many n.

Proof. Suppose that Γ is not virtually abelian. Then by Proposition 8 Γ
has a subgroup Γ0, say, of index t such that the pro-p completion G0 of Γ0

is not p-adic analytic. By [Sh1, Corollary 2.5] there exists infinitely many k
for which spk(G0) ≥ pk2/9. Hence for infinitely many numbers n we have

sn(Γ) ≥ (n/t)log(n/t)/9 log p ≥ nlog n/9 log p

n
2 log t
9 log p

.

This implies our statement. �

By a recent result of Segal [Se2] no such gaps exist for the subgroup
growth of arbitrary finitely generated groups.

We remark that for Γ = SL(n, Z) (n ≥ 3), and many other S-arithmetic

groups Γ we have sn(Γ) ≤ n
c′ log n
log log n ([Lu]). By a very recent result of Nikolov

[Ni], for Γ = SL(n, Fp[t]) (n ≥ 3) we have sn(Γ) ≤ nc′ log n. Hence the above
bounds are sharp.

We need the following result which is proved implicitly in [LMS].

Lemma 11. Let Γ be a finitely generated group, n a positive integer and Ω
a family of fields of characteristic p. If Γ can be embedded in the Cartesian
product

∏
F∈Ω

GL(n, F ) then Γ is a subdirect product of finitely many linear

groups of degree n over fields of characteristic p.

Our next result extends Rapinchuk’s theorem [Ra1].
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Proof of Corollary 2.
Case 1. By Theorem 1 any representation of Γ over a field of positive

characteristic has finite image. Let π be a complex linear representation of
Γ. Since Γ is finitely generated, there is a finitely generated ring A with
π(Γ) ⊆ GL(n, A). For any transcendental a ∈ A, there is a ring homomor-
phism ζ : A → K where K is a field of positive characteristic with ζ(a) still
transcendental. If for some γ ∈ Γ we have tr(π(Γ)) /∈ Q then ζ defines a rep-
resentation πζ over K with tr(πζ(γ)) transcendental. Hence πζ(Γ) is infinite,
a contradiction.

We proved that the traces of all finite dimensional complex linear repre-
sentations are algebraic numbers which is equivalent to our conclusion, when
the characteristic of F is 0 (see [Ba1, Example 5.12 (3)]).

Case 2. Suppose now that F has characteristic p. Denote by K the
intersection of the kernels of F-representations of degree n of the group Γ.
By Lemma 11 Γ/K is a subdirect product of finitely many linear groups of
degree n over fields of characteristic p. Each of these linear groups is abelian
by finite by Theorem 1 hence the same is true for Γ/K. Since Γ is an FAb
group this implies that Γ/K is finite. Hence the number of irreducible F-
representations of degree n of Γ is bounded by the total number of irreducible
F-representations of Γ/K which is at most |Γ/K| [Be]. Let ρ be a completely
reducible representation of degree n of Γ. By the above we have finitely many
choices for the irreducible components ρ1, . . . , ρt of ρ. The images ρi(Γ) are
finite and ρ(Γ) is a subgroup of their direct product hence there are finitely
many choices for ρ. �

Remark. As the above proof shows, when the field F has positive character-
istic, we can say a bit more; in this case all representations of a given degree
factor through some finite quotient Γ/K of Γ.

Recall that an upper section of Γ is a group X ∼= H/K with H and K
finite index subgroups of Γ, K normal in H. If H is subnormal in Γ and X
is simple then X is an upper composition factor of Γ, if both H and K are
normal in Γ, then X is an upper factor of Γ.

It is proved in [Py] that the degrees of alternating upper composition
factors and the Lie ranks of Lie-type upper composition factors of a group Γ
are bounded in terms of its cyclic width (if it is finite). Moreover in [BMP]
it is proved that if Lr is a non-abelian upper factor of Γ, with L simple then
r is bounded in terms of cw(Γ).

To prove Theorem 3 we need these results, whose proofs rely on the
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classification theorem of finite simple groups (CFSG) and the following ob-
servation.

Lemma 12. Let Γ be a finitely generated FAb group, H a normal subgroup
of index m in Γ and H/K a soluble upper section of derived length d. Then
there is a finite bound for |Γ : K| which depends only on m, d and Γ.

Proof. Denote by I = I(m) be the intersection of all normal subgroups H
of index m in Γ. Since Γ is finitely generated I has finite index in Γ. Let I(d)

be the d-th term of the derived series of I. By the FAb property I(d) is of
finite index. This index gives the desired bound. �

Proof of Theorem 3.
Let L be any non-abelian upper composition factor of Γ. Since Γ is finitely

generated, there is an upper factor H/K of Γ which is isomorphic to Lr for
some r. Set C = CΓ(H/K). Then Γ/C is the finite group of automorphisms
that Γ induces on H/K. Hence Γ/C contains a subgroup B/C isomorphic to
Lr such that Γ/B has an embedding into Out(L)wrSym(r). As mentioned
above r is bounded in terms of cw(Γ). It is a well-known consequence of
CFSG that Out(L) is soluble of derived length at most 3, hence Γ/B has a
normal subgroup of cw(Γ)-bounded index of derived length at most 3. By
Lemma 12 we see that |Γ/B| is bounded in terms of Γ.

If L is a simple group of rank l in Lie(p) then it has a faithful represen-
tation of degree roughly l2 over Fp, the algebraic closure of Fp (see the proof
of Theorem D in [MS]). By [Py] l is bounded in terms of cw(Γ). Therefore
B/C ∼= Lr and then also Γ/C has a faithful representation of Γ-bounded
degree over Fp. By Corollary 2 there are only finitely many such representa-
tions of Γ hence for given p there are only finitely many choices for L. This
completes the proof. �

Proof of Theorem 4.
¿From [BMP, Theorem 2.3 and Corollary 2.4] one deduces that G has

such a series of subgroups satisfying 1), 2) and 3). Now 4) follows from
Theorem 3. �

Proof of Corollary 5.
As Γ is residually finite, it is embedded in G = Γ̂. Now using the notations

of Theorem 4 we distinguish between several cases.
Assume first that S is of finite index in G. This implies that Γ has a

finite index subgroup Γ0 with Γ̂0 prosolvable. If Γ0 itself is solvable, then by
the FAb property of Γ, Γ0 and Γ are finite and we are in Case 0).
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If Γ0 is not solvable, then Γ can not be a linear group, since every non
virtually-solvable linear group has infinitely many simple groups as upper
composition factors. This follows easily from the Strong Approximation The-
orem (see [We]). We also give a direct argument: if such a group Γ is linear,
then Γ and also Γ0 is residually finite-linear-group of the same degree. These
finite linear quotients of Γ0 are solvable of bounded derived length. Hence
Γ0 is solvable, a contradiction.

Now assume that S is of infinite index in G in which case Γ ∩ S = 1.
It follows that Γ is separated by bounded degree representations over finite
fields, such that every characteristic occurs only finitely many times. This
implies that Γ is linear over a field of characteristic 0 (see [LMS]).

As Γ is just infinite, it has a faithful specialisation into GL(n, Q) where
Q is the field of algebraic numbers (see [LM, Proposition 2.2]). As Γ is
finitely generated, it is inside GL(n, K) for some number field K. In fact,
Γ is in G(OS), where G is its Zariski closure, O is the ring of integers in K,
S a finite set of valuations containing all the archimedean ones and OS =
{x ∈ K | v(x) ≥ 0 for all valuations v /∈ S}. G can be made semisimple since
Γ is just infinite. �

3 Profinite constructions

In contrast to Theorem 1 below we prove that the groups SL(n, q) with n
fixed form a family of linear groups of dimension n with n-bounded cyclic
width and having no abelian normal subgroups of n-bounded index (see a
forthcoming paper [AP] for a more general result saying that if G is a finite
completely reducible linear group of dimension n over any field then its cyclic
width is at most 1000n). This shows that in Theorem 1, unlike in Jordan’s
theorem, we cannot bound the index of the abelian normal subgroup.

In fact, we obtain a more precise result which we use to construct exam-
ples of profinite groups showing that Corollary 2, Theorem 3 and Theorem
4 do not hold in the profinite category.

Lemma 13. Let q > 3 be a prime power and n ≥ 2. Then SL(n, q) is the
product of 10n(n− 1) cyclic subgroups of order q − 1.

Proof. We claim that the upper triangular subgroup U ⊆ SL(2, q) is con-
tained by the product of 5 cyclic subgroups of order q−1. We use conjugates
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of the diagonal subgroup D (which is a cyclic subgroup of order q − 1). De-
noting the elements of D and U by

dx =

[
x−1 0
0 x

]
and uy =

[
1 y
0 1

]

we have d−1
x u1dx = ux2 . Since uxuy = ux+y and in any finite field every

nonzero element is the sum of two squares, we have{
ux | x ∈ F ∗

q

}
=

{
dx−1u1dxy−1u1dy | x, y ∈ F ∗

q

}
.

Choose t ∈ F ∗
q such that t2 6= 1 (here we need q > 3). Set a = u(t−2−1)−1 . A

simple calculation shows that da
t dt−1 = u1 hence {I, u1} ⊆ DaD. Therefore

U = {ux | x ∈ Fq} ⊆ DDaDDDaDD = DDaDDaD. This proves our claim.
Now let Eij ⊆ SL(n, q) be the subgroup consisting of the matrices which

differ from I only in the (i, j)-th entry (i 6= j). It is well-known that Eij and
Eji generate a subgroup isomorphic to SL(2, q) and Eij and Eji correspond
to the upper and lower triangular subgroups. By the above claim every
subgroup Eij is contained by the product of 5 cyclic subgroups of order q−1
in SL(n, q).

Also let U and L denote the upper and lower triangular subgroups of
SL(n, q). We have U =

∏
i<j Eij and L =

∏
i>j Eij hence U and L are

contained by the product of 5n(n−1)
2

cyclic subgroups of order q − 1. On the
other hand LULU = SL(n, q) (see [DV], the proof of Corollary 14). This
implies our statement. �

Denote by pi the i-th prime. It is easy to see that the numbers 2pi − 1
are pairwise relatively prime.

Let G =
∏∞

i=1 PSL(n, 2pi) be the cartesian product of the groups PSL(n, 2pi)
for some fixed n ≥ 2. G is a profinite group with the usual product topology.

Theorem 14. 1) G is boundedly generated as a profinite group.
2) G has polynomial index growth and the FAb property as an abstract group.
3) G does not contain any dense discrete boundedly generated subgroups.

Proof. Set k = 10n(n − 1). By Lemma 13 any group PSL(n, 2pi) is the
product of k cyclic subgroups Ci

1, . . . , C
i
k of orders dividing 2pi − 1. For j

fixed the orders of the groups Ci
j are pairwise relatively prime therefore the

subgroup Cj =
∏∞

i=1 Ci
j of G is procyclic. G is the product of the procyclic

subgroups Cj i.e., it is boundedly generated.
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It was proved independently by Saxl and Wilson [SW] and Martinez and
Zelmanov [MZ] that in a finitely generated profinite group which is a cartesian
product of nonabelian finite simple groups every finite index subgroup is
open. It also follows easily, that groups of this type are perfect (using the fact,
first proved by Wilson [Wi], that there exists a constant r, such that every
element of a nonabelian finite simple group is the product of r commutators).

In particular every finite index normal subgroup N of our G is open.
It follows that G/N is a product of k cyclic subgroups hence |G/N | ≤
(exp(G/N))k for every N , i.e., G has polynomial index growth.

It is also clear that every such group N is also perfect. Hence if H is
a finite index subgroup of G then H contains a perfect normal subgroup of
finite index therefore G has the FAb property.

Let Γ be a finitely generated subgroup of G. For q arbitrary the group
PSL(n, q) can be embedded into SL(n2 − 1, q). Using Lemma 11 we see
that Γ is a subdirect product of finitely many linear groups over fields of
characteristic 2. If Γ is boundedly generated then by Theorem 1 it is a
subdirect product of finitely many abelian by finite groups hence Γ itself is
abelian by finite. Therefore Γ can not be dense in G. �

In view of the above example it is natural to ask whether the profinite
group H =

∏∞
i=1 PSL(n, pi) with n ≥ 2 and p fixed is boundedly generated.

We give a negative answer.

Proposition 15. H is not boundedly generated as a profinite group.

Proof. Suppose that H is the product of m procyclic subgroups. For an
arbitrary k let rk = p1p2 · · · pk (the product of the first k primes) and let
Hk =

∏
d|rk

PSL(n, pd). Set

ok = |GL(n, prk)| = prk
1
2
n(n−1)

n∏
i=1

(prki − 1).

If d | rk then GL(n, pd) can be embedded into GL(n, prk), which yields∣∣PSL(n, pd)
∣∣ | ok. As a consequence, every element of the product Hk has

order dividing ok. Since Hk is a quotient of H it is a product of m cyclic
subgroups. Thus using the obvious inequality

∣∣PSL(n, pd)
∣∣ ≥ pd we obtain

that

om
k ≥ |Hk| ≥ p

∑
d|rk

d

= p(1+p1)(1+p2)···(1+pk).
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Using ok ≤ prkn2
and taking logarithms we obtain

m ≥ 1

n2

(1 + p1)(1 + p2) · · · (1 + pk)

p1p2 · · · pk

≥ 1

n2

k∑
i=1

1

pi

.

This is a contradiction since the right side can be made arbitrarily large.
�

We remark here that our proof of Theorem 1 used a ’local method’, i.e.,
embedding Γ into GL(n, K) where K is a local field. One can give a different
proof by ’global’ considerations, i.e., appealing to the Strong Approxima-
tion Theorem for linear groups (see [We] and [Pi2]). From the theorem it
follows that Γ has many nonabelian simple quotients and then a variant of
Proposition 15 shows that Γ can not be boundedly generated. We omit the
details.

Note that for every n the group of the form
∏

p PSL(n, p) (p runs over all
prime numbers) is a BG profinite group (see [LP] for a more general result).

Our next result has a variety of uses in constructing boundedly generated
profinite groups.

Lemma 16. Let G be a transitive permutation group on n elements and H
a pointstabiliser.
1) If G is 2-transitive then it is a product of 3 pointstabilisers.
2) Let N be the normal subgroup of G generated by all pointstabilisers. Sup-
pose H has an orbit of length ≥ n

r
. Then N is a product of at most 2r

pointstabilisers.

Proof. If G is 2-transitive, then for any g ∈ G \H we have G = H ∪HgH.
Now H fixes exactly one point, say α, hence if H1 is the stabiliser of β 6= α
then there is a g ∈ H1 \H. Therefore G = HH1H which proves 1).

Now let G be as in 2). Our conditions imply that there is a double coset

HgH of size ≥ |G|
r

. Hence the subset X = g−1HgH (which is a product of 2

pointstabilisers) also has size ≥ |G|
r

.
By a result of Hamidoune [Ha] if a finite group G is generated by a set of

size d, then every element of G is a product of at most 2 |G|
d

elements of this
set. Hence if M is the subgroup of N generated by X, then every element of
M is a product of at most 2 |M |

|X| elements of X.
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If M 6= N then there is a pointstabiliser H1 * M . The set MH1 is the
union of at least 2 right cosets of M . If MH1 6= N then there is a pointsta-
biliser H2 such that MH1 is properly contained in MH1H2 which then must
be the union of at least 3 right cosets of M . Repeating this argument we
see that N is a product of at most 2 |M |

|X| + |N : M | − 1 pointstabilisers. But

2 |M |
|X| + |N : M | − 1 ≤ 2 |N |

|X| ≤ 2r which proves 2). �

Now we define a metabelian group with some interesting properties. Let
A =

∏∞
k=1 AGL(1, 2pk) be the cartesian product of the finite affine groups

AGL(1, 2pk).

Proposition 17. 1) A is an extension of an elementary abelian 2-group by
a procyclic group;
2) A is boundedly generated as a profinite group;
3) A has polynomial index growth as an abstract group;

4) A has at least n
1
8

log n−1 subgroups of index n for infinitely many n;
5) A does not contain any dense discrete boundedly generated subgroups.

Proof. By definition any group AGL(1, 2pk) is an extension of an elementary
abelian group Vk of order 2pk by a cyclic group of order 2pk−1. It is naturally
a 2-transitive permutation group. Hence by Lemma 16 it is a product of 3
cyclic subgroups of order 2pk − 1. 1) and 2) follow immediately (using the
fact that the numbers 2pk − 1 are relatively prime).

By a result of Segal [Se] any finite index subgroup of a finitely generated
prosoluble group is open hence 2) implies 3).

For any k the linear space Vk has at least 2x(pk−x) subspaces of codimension
x. Each such subspace defines - in an obvious way - a subgroup of index (2pk−
1)2x in A. Setting x =

[
pk

3

]
we obtain 4) by straightforward computation.

Finally note that AGL(1, 2pk) is isomorphic to a subgroup of SL(2, 2pk)
(namely to the subgroup of all matrices with 0 above the main diagonal). As
in the proof of Theorem 14 we see that any boundedly generated subgroup
Γ of A is abelian by finite hence it can not be dense in A. �

There is nothing really special about the prime 2 in the above construc-
tions. The group AGL(1, pt) has a unique subgroup A0(pt) which is an ex-

tension of an elementary abelian p-group by a cyclic group of order pt−1
p−1

.

It is naturally a permutation group of permutation rank p (i.e., the cyclic
pointstabiliser has p orbits). Using Lemma 16 one can see that A0(pt) is a

product of at most 4p cyclic groups of order pt−1
p−1

. It follows that the profinite

group A0 =
∏∞

k=1 A0(ppk) is boundedly generated.

13



Using similar ideas one can reprove Theorem 14 and show that in fact for
every fixed prime p the profinite groups of the form

∏∞
k=1 PSL(n, ppk) are

boundedly generated.
To obtain somewhat different examples one can use the primitive affine

permutation groups of rank 3 listed in [Li]. For instance for 2d = q6 the
group SL(2, q) acts on the nonzero elements of the group Cd

2 with 2 orbits.
Denote the corresponding affine groups of the form Cd

2 on SL(2, q) by A1(q).
Using Lemma 16 one can see that A1(q) is a product of at most 40 cyclic
subgroups of order q − 1. Therefore the profinite group A1 =

∏∞
k=1 A1(2pk)

is boundedly generated.
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